Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555496

RESUMEN

Damage induced by oxidative stress is a key driver of the selective motor neuron death in amyotrophic lateral sclerosis (ALS). Mitochondria are among the main producers of ROS, but they also suffer particularly from their harmful effects. Voltage-dependent anion-selective channels (VDACs) are the most represented proteins of the outer mitochondrial membrane where they form pores controlling the permeation of metabolites responsible for mitochondrial functions. For these reasons, VDACs contribute to mitochondrial quality control and the entire energy metabolism of the cell. In this work we assessed in an ALS cell model whether disease-related oxidative stress induces post-translational modifications (PTMs) in VDAC3, a member of the VDAC family of outer mitochondrial membrane channel proteins, known for its role in redox signaling. At this end, protein samples enriched in VDACs were prepared from mitochondria of an ALS model cell line, NSC34 expressing human SOD1G93A, and analyzed by nUHPLC/High-Resolution nESI-MS/MS. Specific over-oxidation, deamidation, succination events were found in VDAC3 from ALS-related NSC34-SOD1G93A but not in non-ALS cell lines. Additionally, we report evidence that some PTMs may affect VDAC3 functionality. In particular, deamidation of Asn215 alone alters single channel behavior in artificial membranes. Overall, our results suggest modifications of VDAC3 that can impact its protective role against ROS, which is particularly important in the ALS context. Data are available via ProteomeXchange with identifier PXD036728.


Asunto(s)
Esclerosis Amiotrófica Lateral , Espectrometría de Masas en Tándem , Humanos , Superóxido Dismutasa-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
2.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681682

RESUMEN

The c subunit of the ATP synthase is an inner mitochondrial membrane (IMM) protein. Besides its role as the main component of the rotor of the ATP synthase, c subunit from mammalian mitochondria exhibits ion channel activity. In particular, c subunit may be involved in one of the pathways leading to the formation of the permeability transition pore (PTP) during mitochondrial permeability transition (PT), a phenomenon consisting of the permeabilization of the IMM due to high levels of calcium. Our previous study on the synthetic c subunit showed that high concentrations of calcium induce misfolding into cross-ß oligomers that form low-conductance channels in model lipid bilayers of about 400 pS. Here, we studied the effect of cyclophilin D (CypD), a mitochondrial chaperone and major regulator of PTP, on the electrophysiological activity of the c subunit to evaluate its role in the functional properties of c subunit. Our study shows that in presence of CypD, c subunit exhibits a larger conductance, up to 4 nS, that could be related to its potential role in mitochondrial toxicity. Further, our results suggest that CypD is necessary for the formation of c subunit induced PTP but may not be an integral part of the pore.


Asunto(s)
Ciclofilinas/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Calcio/metabolismo , Humanos , Permeabilidad , Pliegue de Proteína
3.
Sci Rep ; 11(1): 8744, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888826

RESUMEN

The c subunit is an inner mitochondrial membrane (IMM) protein encoded by three nuclear genes. Best known as an integral part of the F0 complex of the ATP synthase, the c subunit is also present in other cytoplasmic compartments in ceroid lipofuscinoses. Under physiological conditions, this 75 residue-long peptide folds into an α-helical hairpin and forms oligomers spanning the lipid bilayer. In addition to its physiological role, the c subunit has been proposed as a key participant in stress-induced IMM permeabilization by the mechanism of calcium-induced permeability transition. However, the molecular mechanism of the c subunit participation in IMM permeabilization is not completely understood. Here we used fluorescence spectroscopy, atomic force microscopy and black lipid membrane methods to gain insights into the structural and functional properties of unmodified c subunit protein that might make it relevant to mitochondrial toxicity. We discovered that c subunit is an amyloidogenic peptide that can spontaneously fold into ß-sheets and self-assemble into fibrils and oligomers in a Ca2+-dependent manner. C subunit oligomers exhibited ion channel activity in lipid membranes. We propose that the toxic effects of c subunit might be linked to its amyloidogenic properties and are driven by mechanisms similar to those of neurodegenerative polypeptides such as Aß and α-synuclein.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Canales de Calcio/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Humanos , Microscopía de Fuerza Atómica , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , Conformación Proteica
4.
Structure ; 28(2): 206-214.e4, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31862297

RESUMEN

The voltage-dependent anion channel (VDAC) forms the primary diffusion pore of the outer mitochondrial membrane. In its apo form, VDAC adopts an open conformation with high conductance. States of lower conductance can be induced by ligand binding or the application of voltage. Here, we clarify at the atomic level how ß-NADH binding leads to a low-conductance state and characterize the role of the VDAC N-terminal helix in voltage gating. A high-resolution NMR structure of human VDAC-1 with bound NADH, combined with molecular dynamics simulation show that ß-NADH binding reduces the pore conductance sterically without triggering a structural change. Electrophysiology recordings of crosslinked protein variants and NMR relaxation experiments probing different time scales show that increased helix dynamics is present in the open state and that motions of the N-terminal helices are involved in the VDAC voltage gating mechanism.


Asunto(s)
NAD/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína
5.
Cell Rep ; 22(13): 3427-3439, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590613

RESUMEN

Polyphosphates (polyP) are chains of inorganic phosphates found in all cells. Previous work has implicated these chains in diverse functions, but the mechanism of action is unclear. A recent study reports that polyP can be non-enzymatically and covalently attached to lysine residues on yeast proteins Nsr1 and Top1. One question emerging from this work is whether so-called "polyphosphorylation" is unique to these proteins or instead functions as a global regulator akin to other lysine post-translational modifications. Here, we present the results of a screen for polyphosphorylated proteins in yeast. We uncovered 15 targets including a conserved network of proteins functioning in ribosome biogenesis. Multiple genes contribute to polyphosphorylation of targets by regulating polyP synthesis, and disruption of this synthesis results in translation defects as measured by polysome profiling. Finally, we identify 6 human proteins that can be modified by polyP, highlighting the therapeutic potential of manipulating polyphosphorylation in vivo.


Asunto(s)
Lisina/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Biogénesis de Organelos , Fosforilación
7.
Biochemistry ; 54(36): 5646-56, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26303511

RESUMEN

The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane ß-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/química , Péptidos/química , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 2 Dependiente del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/química , Dicroismo Circular , Biología Computacional , Humanos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Isoformas de Proteínas/química , Estructura Secundaria de Proteína , Espectrofotometría Infrarroja
8.
PLoS One ; 9(8): e103879, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25084457

RESUMEN

Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.


Asunto(s)
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/metabolismo , Secuencia de Aminoácidos , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Homología de Secuencia de Aminoácido , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA